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For the problem of  a gas condensing into a solid phase on a finned surface a mathematical model is proposed 

which leads to a boundary-value problem for a nonlinear second-order equation. A comparison with experiment is 

made and the problem on an optimal rectangular cross section fin is considered. 

The main advantage of the condensation method of air evacuation in a pressure range below 40 torr is the possibility of 

obtaining, in a vacuum chamber, air free of dust and hydrocarbons. On pump panels, condensation proceeds into a solid phase, 

the initial gas-to-panel heat-transfer coefficient is usually about 50 W/(m 2 -deg), and it quickly decreases with time because of 

the increasing thermal resistance of a growing cryoprecipitate layer. To reduce pump overall dimensions, it is necessary to have 

a cryopanel with a developed and actively air-evacuating surface. 

Gas condensation on a finned surface has been investigated in many works [1-11]. The fundamental principles of 

classical theory and results of heat transfer theory in thin fins, without considering a condensation process, are a matter of 

concern in [1, 3]. A gas (vapor) condensation process on a finned surface into a liquid phase was examined in [2, 4-6, 8-10]. In 

this case, the condensate is removed by gravity from a system (condensation by gravity) and the problem is stationary. Conden- 

sation into a solid phase is discussed in [7, 11], which are of a purely experimental character, while the mathematical model 

considered in [7] is based on the assumption that a fin is isothermal, the condensate layer thickness is constant everywhere and 

therefore is rather rough. 

1. We consider a single isolated fin with height L and half-thickness or(x). Considering the fin to be thin (or(x) = % << 

L) and infinitely extended along the z-axis (a two-dimensional problem), we take as a model of a heat transfer process inside a 

fin covered with a condensate layer, a one-dimensional (with respect to x) differential equation for a fin temperature averaged 

along y, which is obtained from the following considerations. 

Since the thermal conductivity of the fin is much higher than the condensate counterpart, it is assumed that heat fluxes 

inside the fin mainly propagate in a longitudinal direction, while those inside the condensate move in a transverse direction from 

the condensate surface toward the fin (Fig. 1). We consider a layer between the planes x and x + dx and write the law of 

conservation of heat. Let T(x, t) be the mean fin temperature in the cross section x. Assume that the heat flux inside the fin is 

directed along the x-axis, the condensate layer is sufficiently thin and the heat flux along it may be neglected. Thus, the specific 

heat flux Jc carried by a condensing gas arrives, without losses, through a side surface of the fin. The heat balance equation for 

the indicated volume allows, as a consequence, a partial differential equation to be obtained 

' f  OX \ ~ , ]  "~- ]c ~- O'Cf pf  Ot (1) 

for the mean temperature. 

We find an equation for the specific heat flux Jc by using the gas motion and condensation model. Neglecting natural 

convection, we consider only gas motion caused by its condensation. Considering the curvature radius of a condensate surface to 

be much larger than the diffusional layer thickness, we introduce a local coordinate system at each point of the surface (Fig. 2). 

Within the scope of the assumptions made, the gas motion is naturally considered to be locally one-dimensional and occurring 
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Fig. 1. The single fin with a condensate layer. 
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Fig. 2. Local coordinate system. 

along the normal toward the condensate surface (the s-coordinate). From the continuity equation and the above assumptions it 

follows that the gas velocity v remains constant along the direction s and the heat-transfer process inside the gas is described by 

the equation 

vTs=%~T~s, % - - ,  0 < s < o o ,  (2) 
Cgpg 

with the boundary conditions 

T (0) = Tin, T (+  co) = T=. (3) 

Equation (2) is written on the assumption that a heat transfer process slowly develops and the operator 0/0t may be 

neglected. If v < 0 (the flow is directed towards the condensate), then a solution of Eq. (2) with the boundary conditions (3) has 

the form typical of boundary layers: 

T (s) = T~ + (Tin - -  T~) exp (vs/%). (4) 

Note that the expression (4) represents the dependence on time and on the y-coordinate in implicit form, since the local 

gas velocity v is a function of the above variables. 

The laws of conservation on the condensate surface result in the following relations. The law of conservation of matter 

leads to an obvious equation (the function y = h(x, t) describes the condensate surface; see Fig. 1) 

0 h  _  'gv, (s) 
~r Pc: 

the law of conservation of  heat needs a more detailed consideration. 

to 

Consider a section of the condensate surface with the length dl (Fig. 1). The amount of heat carried by the gas is equal 

l ~, OT 
Q g =  - -  CgpgTls=ovd[dl - -  g--~-s s=0 dtdl, 
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The heat released on account of a phase transition is 

Qp = rP.cdhdl.  

The heat flux toward the fin from the condensate surface is Jc, since according to the assumptions made above the 

longitudinal heat fluxes may be neglected. This means that the amount of heat carried away is 

Qc = ]cdxdt. 

Inside a volume of substance caused by condensation, the amount of remaining heat is 

Qh = C c!P c.T• 

From the balance relation 

Qc+Q~= Qv+Qg 

after simple transformations, taking into account (4) and (5), we arrive at the expression for the flux Jc: 

r, = r  + c g r o o - - C c T i n .  (6) ( oh Oh 
lc = 1 + \ ax / o c - - E  7 

One more equation may be obtained from the next considerations. According to the assumptions made, the flux Jc does 

not depend on y in the condensate layer at each fixed x or, otherwise, the temperature in the condensate layer is a linear 

function of depth. It yields another expression for the flux Jc: 

ic = i c  " T i n -  T .  (7) 
h - - a  

After elimination of the flux Jc from Eqs. (1), (6), and (7) we obtain a system of two partial differential equations for 

two unknown functions T(x, t) and h(x, t). Before formulating the boundary and initial conditions for this system, we introduce 

dimensionless quantities. 

First, we introduce the dimensionless temperature | as follows 

T = Tin-[- O(T b --Tin), 

and instead of  the function h(x, t) consider the condensate layer thickness 6(x, t) = h(x, t) - a(x) having a more evident physical 

meaning. The dimensionless condensate layer thickness A is introduced as 6 = L2)tc/a0~f, and the independent variables X and 

T as 

2 
X = - - x ,  T = )~f ( T i n - -  T b) t. 

L pc L ~ c }  

For a condensate layer not too thick, it may be assumed 0h/Ox = d6/dx; then the mathematical model, after changing the 

variables, may be reformulated in the form of the following system (a prime indicates the derivative with respect to the 

dimensionless coordinate X): 

1 0 / f f 0 0 ' / - W l  _}_(o.,/L) ~ a o OA __ cfof~,f(Tin--Tb)a~ O0 (8) 

a OX I OX ] a Ox L~Pc)~c7 01: ' 

V1 + ( r  2 0 ~  _ o 
0"~ h (9) 

In the case of thin fins for which a 0 < < L (Pc~c~/[cfpt2f• (Tin Tb)]) 1/2, we may neglect the thermal lag of the fin and 

assume the right-hand side of Eq. (8) to be zero. Finally, we obtain 

1 0 ( 0o] ,~oOA 
a - - - V  1 4- (a ' /L)  ~ - -  - -  O, (10) 

OX OX ] (r 

0A 0 
V 1 + ( r  ~ = O~ A (11) 
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It is necessary to supplement Eqs. (10), (11) with initial and boundary conditions. Assume that at the initial moment of 

time r = 0 a condensate is absent on the fin: 

Al,=0 = O, (12) 

the fin base temperature is given and equal to T b and the fin apex is heat-insulated. The last condition is the standard one in the 

theory of heat transfer of finned surfaces, since heat transfer near the fin apex insignificantly contributes to the heat transfer 

process on the whole. Thus 

O[x=0 = 1, O'lx=l =- 0. (13) 

Equations (10) and (11) with the initial and boundary conditions (12) and (13) form a mathematical model of gas 

condensation on an isolated fin. 

2. Owing to the fact that the partial derivatives of functions O and A with respect to different independent variables 

enter into Eqs. (10), (11), these equations are reduced to one nonlinear differential equation. We rewrite the Eq. (11) in the 

form 

V1 -t- (o'/L) ~ 1 OA~ _ 0 (14) 
2 0z 

and integrate it and Eqs. (10) over r using the initial condition (12). After introducing the new auxiliary function W(X, r) = 

f~ O(X, r ' )  dr ' ,  Eq. (12) allows elimination of the function A from the system and finally yields the boundary-value problem 

for qJ(x, O: 

( O ~ )  .... ( l +  , - , ) , / 4  
O c~ % l/2-fg, (15) 

o x  - -62- ,  , -Z-~- .  

O~ = O. (16) 

The problem for the determination of the dimensionless temperature @(X, r) = au2/ar is obtained from the boun- 

dary-value problem (15), (16) by varying it with respect to r and is of the form 

O ( 9 0 )  ( ( Y ' 2 )  1/4 0 (17) 

Ox c~ --d- U :~,~ , 1 + - - U -  % V f f ~  ' 

(16). 

O!x=~ O-~X. Ix=l = O. (18) 

This linear boundary-value problem relative to O must be solved after determining the function ~ from the problem (15), 

Problems (15)-(18) have been solved by the shooting method [12], while the auxiliary Cauchy problems, by the 

Runge-Kut ta  method of the fourth-order of accuracy. 

3. We consider the case most often met with in practice, i.e., rectangular cross section fins. For such fins, cr'(X) = 0, and 

Eqs. (15), (16) are simplified as 

�9 O-~X x =  1 0 ~  -- ] / ' 2 ~ ,  ~ [x-0  = ~, = O. (19) 
dX ~ 

We obtain an approximate solution of the problem (19) by linearizing the differential equation in the vicinity of W ~- T. 

To correct f2 = q~ - T, we obtain the linear boundary-value problem 

a~f~ "(2 - V ~ ,  9tx=o O, O-~Xx= t OX ~ V-2-~ = = O, 

whose solution is found in explicit form. Finally, we obtain for the function q~ 

ch • (1 - -  X) 
= 2r - - -  ~. (20) 

ch • 
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Comparison with numerical calculations shows that the approximation (20) has a relative error not worse than 3% if the 

dimensionless t ime ~ _> 0.8; here the error monotonically decreases with increasing ~. Thus, the approximate solution obtained 

may be used at least for qualitative analysis of the characteristics of rectangular fins. Comparison of a numerical solution of the 

problem for rectangular fins and experimental data is a matter of concern in the next section. 

As an example of  using the mathematical model obtained, we consider a problem on the choice of  optimal parameters 

of a rectangular fin. The problem is aimed at obtaining a maximum possible condensate mass on the fin at a given moment of 

time t. The running condensate mass on the fin is 

or in terms of  new variables 

L 

m = 2,oo ( 6 (x, t) dx, 
0 

l 2pcLaLc 
m = C . (  A(X, "OdX, C--  (21) 

0 ao~'f 

Taking (14) and (19) into account, we have for a rectangular fin A(X, T) = 42u2 = 02W/OX 2 which, after substituting into 

(21) yields a more convenient expression 

m -= - - C  O~ [ 
OX Ix=o" (22) 

In the case of using the approximate solution obtained above by the linearization method, the criterion (22) may be 

transformed to the form 

2pcL,)~ c m = (22) ~/4 th  (22) -1/4.  (23) 
a0Lf 

We analyze the dependence of the criterion (23) on the geometric parameters. For  this, we substitute the expression for 

dimensionless time r in terms of physical time t and let C 1 and C 2 denote the combinations of physical quantities independent 

of a 0 and L. We obtain m = Cla01/2tanh(CzLa0-1/2), whence it is seen that the condensate mass monotonically increases with 

L, but this growth soon slows down: with the growth of L the condensation process gets "saturated," i.e., the dependence re(L) 

has a flat asymptote. This is attributed to a rapid increase of the thermal resistance of  the fin and, as a consequence, to a 

decrease of its effectiveness. The dependence on a 0 is of a similar character. The presence of the flat asymptote is explained by 

the fact that the model does not include the processes at the end plane of the fin; thus an increase in a 0 does not result in an 

increase of the working area of the fin though causes a decrease of thermal resistance. These conclusions are quite consistent 

with simple qualitative considerations concerning the condensation process: the larger the fin dimensions, the larger the running 

condensate mass on it to the given moment of time. 

Obviously, the formulation of the problem of fin optimization must include a constant, for which we assume a cross-sec- 

tional area of the fin be 

2%L ~ S = const. (24) 

The problem of function minimization (23) with the constraint (24) may be easily solved analytically. However, the 

subsequent analysis shows that its solution is found within the T range at which the approximate solution (20) of the problem 

(19) has an error of more than 10%. Therefore, we consider a numerical algorithm of solution of the formulated problem. 

Using (24), we eliminate, a 0 from (22) and express m in terms of T: 

m = C~'~ -2/3 O~ [ 
OX x=0" 

The maximum of the given function is determined by calculating its derivative and equating it to zero. In calculations, 

determination of the derivative of a boundary-value problem solution by the value of the boundary condition leads to the 

variation problem. The final result is 

o ,r  = o, (25) 
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Fig. 3. Schematic of the experimental set-up: 1) vacuum 

chamber; 2) freezer; 3) receiver; 4) standard vacuum gauge; 5) 

leak; 6) fin; 7) gas bottle; 8) nitrogen trap; 9) vacuum pump; 

10) vacuum gauges. 

O~U U Ulx= o 1 OU [ ORr I 3 0 U  I 
- -  - -  , = , = = -  T ( 2 6 )  OX 2 -[/2-~ OX lx=i 0, ~ x=0 2 OX x=0" 

We may show that the problem obtained allows us to determine a single value of the parameter ~ at which the desired 

maximum is realized. The problem (25), (26) has been solved by the modified shooting method at which the auxiliary Cauchy 

problem for Eq. (25) is solved from right to left; next a current value of ~ and initial conditions for U at the point X = 0 are 

determined and then the Cauchy problem for Eq. (26) is solved from left to right. 

Numerical solution of the problem (25), (26) gives 

T o p t =  0,3291 and ~ 0 ~ / x = 0  - -  0 ,5558 .  
O a  and x=T opt 

Knowing "Cop t yields Lopt2Cr0,opt = Topt-1/2j.f[(Tin - Tb)t/(Pc~c~)] which, together with (24), allows one to determine 

concrete optimal dimensions. 

4. The basic calculated results have been verified on an experimental set-up (Fig. 3). A study has been made of time 

dependences of a cryoprecipitate profile on a fin, a fin temperature field, and local and integrated responsiveness of  the fin. The 

experimental bench consisted of vacuum chamber 1 with a cryogenic surface, freezer 2, receiver 3, tempe{ature, pressure and 

cryoprecipitate thickness measuring devices. Vacuum chamber 1 and receiver 3 were preliminarily evacuated by mechanical and 

adsorption pumps to a pressure not higher than 1 �9 10 -5 torr. Prior to the experiment, a gas purified in the freezer came into the 

receiver by filling its volume to atmospheric pressure controlled by standard vacuum gauge 4. The vacuum chamber was manufac- 

tured as a cylinder with a visualization window. The window was intended for observation of the cryoprecipitate growth on the 

cryogenic surface and on some sections of a side surface of the fin. The flow rate of the gas from the receiver was regulated by 

leak 5 and measured against pressure drop by a standard manometer 4. To measure the gas pressure in the vacuum chamber, 

pressure gauges 13VT3-003 together with ampere voltmeters F-30 and VDO-1 were used. Temperature fields on the cryopanel 

and at different points of the fin 6 were measured by differential copper-constantan thermocouples together with Shch-300 

voltmeters. The cryoprecipitate thickness on the fin was determined by thickness gauges (not indicated in the figure). 

The set-up was brought into the operational mode in the following sequence. With gas supply to the chamber being 

valved off, the mechanical pump 2NVR-5DM and the sorption pump NKS-100 were connected to the latter in succession. These 

pumps allowed vacuum about 1.10 .5  torr to be obtained in the system. After cooling the cryopanel by liquid nitrogen, the 

pressure in the vacuum chamber was reduced to less than 1 �9 10 -6  torr. Then the leak was employed to create the required gas 

pressure and the cryoprecipitate was frozen onto the fin and the cryopanel. 

823 



0,~ a A 
0,7 

o,5 . o,5 ~, 

0,3 \ . \  o,3 t \ / 3 

[ I I I t I I I I I 

o o,z o,~ o,6 o,8 1,o o qz o,~. o,~ 48 ~,o ~c 

Fig.  4. Dimensionless temperature distribution in the fin (a) and condensate thickness profile 

(b) at different moments of time: 1) T = 0.032; 2) 0.096; 3) 0.192. 

We consider the results of one of the experiments in which an investigation was made of carbon dioxide condensation 

with chamber pressure 133 N/m 2 on a copper fin with height L =0.1 m and half-thickness % = 0.65.10 -3 m cooled with liquid 

nitrogen (the fin base temperature was T b = 80 K). The remaining parameters were as follows: Tin = 138 K, T~ = 290 K, cg = 

820 J/(kg-K), c c = 900 J/(kg .K), r = 5.73.105 J/kg, Pc = 1670 kg/m 3, 2 c = 1.0 W/(m-K),  ~lf = 500 W/(m .K). The process 

was studied within 1 h. 

Figure 4 shows the profiles of dimensionless temperature distribution O(X) and dimensionless cryoprecipitate thickness 

distribution along the fin height A(X) = [2~(X)] lf2 at different r. Continuous curves are obtained using the proposed mathemat- 

ical model, points indicate experimental values. A comparison of the given experimental and theoretical results reveals the 

adequacy of the proposed mathematical model and the considered physical process in a sufficiently wide range of input parame- 

ters. Whence it follows that the optimal solutions for rectangular fins may serve as a basis in designing effective cryogenic 
condensation systems. 

NOTATION 

L tin], fin height; cr [m], fin half-thickness; x, y, z tin], current coordinates; T [K], temperature; j [W/m2], specific heat 

flux; 2 [W/(m .K)], thermal conductivity; c [J(kg .K)], specific heat capacity; p [kg/m3], density; t [sec], time; s tin], local 

coordinate; v [m/sec], gas velocity; g [m2/sec], thermal diffusivity; h tin], condensate thickness; l tin], length; r [J/kg], heat of 

desublimation; O, dimensionless temperature; A, cryoprecipitate dimensionless thickness; X, dimensionless length; r, 

dimensionless time; m [kg/m], running mass; S tin2], cross-sectional area. Indices: in, interphase; b, fin base; 0, initial value; f, fin; 
c, condensate; g, gas; 0% at a distance from the interphase. 
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